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Abstraet-A set of governing equations for the linear theory of a circular cylindrical shell such as
tanks and silos is presented explicitly from rod theory including the distortion of the transverse
cross-section. It is assumed that the deformation in the rod consists of a fundamental deformation,
which can be expressed by displacements and rotations of the axial line of the rod, and a higher­
ordered deformation caused by the warping and distortion of the transverse cross-section. Also, it
is assumed that the higher-ordered deformation adds to the fundamental deformation. The higher­
ordered deformation is expressed by the circumferential Fourier series expansion. Then, the
simplifications of the obtained governing equations are carried out by using the classical hypotheses
in rods. Finally, to examine the derived theory, a static problem ofa cantilevered circular cylindrical
shell has been solved analytically by the Bernoulli-Euler beam theory, by the Timoshenko beam
theory, and by a theory including distortion. From the numerical results, it is concluded that the
distortion is large compared to the transverse deflection of the axial line of rods and that the
influence of the distortion on the transverse deflection of the axial line of rods is negligible.

I. INTRODUCTION

For analyses of cantilevered circular cylindrical shells used as tanks and silos, there are two
theories, shell theory and rod theory.

Shell theory is generally applied to shells, but .it has the following disadvantages.

(1) Since the accuracy of the solution is influenced considerably by boundary
conditions, the exact boundary conditions need to be established. However, they are difficult
to establish in practice.

(2) For particular loads, simple solutions are useful, for example, Seide[l] presented a
simplified solution to an end-loaded cantilevered cylinder with a rigid end-ring. However,
for general loads the simplified solutions are not available and the analysis has to be based
on numerical calculations by computer, and is therefore very expensive. Hence, it is often
impossible to use shell theory in the preliminary design of shells.

On the other hand, rod theory is applied to grasp the behavior of cylindrical shells in
broader aspects. Rod theory has the following advantages.

(1) Because of the macroscopic treatment, the governing equations and boundary
conditions can be expressed in simpler forms than those from shell theory, hence the analysis
is easy.

(2) The mechanical behavior can be macroscopically obtained.

However, rod theory has a fault, the distortion of the transverse cross-section of the
shells is not considered. To cover up this fault and to improve the accuracy to the same
degree as shell theory, it is necessary to establish the highly accurate rod theory including
the distortion of the transverse cross-section. Recently, Hangai and Choi[2] presented the
local buckling analysis of cantilevered cylindrical shells subjected to a transverse end­
shearing force, under constraining the distortion of the cross-section at both ends. However,
rod theory including the distortion of the transverse cross-section to cylindrical shells, has
not been established for general loads and general boundary conditions.
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Meanwhile, the general theory of a Cosserat curve which models a rod-like body with
only two directors includes distortion of the transverse cross-section since the directors are
allowed to change in length. However, this simple theory cannot express practically the
higher-ordered distortion by two directors. Moreover, this simple theory does not include
warping since plane cross-sections remain plane.

The aim of this paper is to formulate the general governing equations of motion to
cylindrical shells by rod theory including the distortion of the cross-section.

The formulation of the governing equations is presented for infinitesimal deformations
through the principle of virtual work, under the assumption that the deformation of the
cylindrical shell consists of the fundamental deformation, which can be expressed by
displacements and rotations ofthe axial line ofthe rod, and the higher-ordered deformation,
which is produced by the warping and distortion of the cross-section. Subsequently, for
practical use of the derived theory, the number of unknowns is decreased by means of
classical hypotheses in rod theory. Finally, in order to examine the proposed theory.
analytical solutions for the Bernoulli-Euler beam, for the Timoshenko beam, and for the
theory including only the distortion of the transverse cross-section, are presented to a static
problem where a uniform load acts on a cantilevered cylindrical shell. Then the effect of
the distortion of the transverse cross-section on the transverse displacement of the axial
line of the rod is discussed.

Meanwhile, in the dynamic problem of liquid storage tanks, there is a problem of a
coupling effect between the liquid and the shell. Recently, Haroun[3] showed that this
coupling effect is negligible. Consequently, in practice, the dynamic problem of liquid
storage cylindrical shells can be treated as a problem where dynamic pressures, given by
either the Housner theory[4] or the velocity potential theory for rigid shells, act on the
empty tank, namely, the shell. Since this treatment, neglecting the coupling effect, simplifies
remarkably the analysis of cylindrical shells, this paper deals with the dynamic pressures
as usual loads acting on the rod.

As for tensor notations, Latin indices take the values of I, 2, and 3; whereas Greek
indices take the values of I and 2. On these notations, Latin indices i, j, and k are used
mainly in the x-coordinate system and Latin indices a, b, and c mainly in the .v-coordinate
system. On the other hand, Greek indices ex, p, and A. are used mainly in the x-coordinate
system, and Greek indices ~, 11, and' mainly in the y-coordinate system.

2. ASSUMPTIONS

In the analysis the following assumptions are employed.

(I) Deformations are infinitesimal.
(2) The stress-strain relations are linear.
(3) A circular cylindrical shell is composed of an isotropic and elastic material and is

uniform and thin walled.
(4) Initial imperfections are negligible.

3. DEFORMATIONS OF RODS

Let us consider a uniform thin-walled circular cylindrical shell embedded in a Euclidian
3-space. The shell does not hold initial imperfections. The shape of a shell is adequately
defined by describing the geometry of its middle surface, which is a surface that bisects the
shell thickness t at each point. Now, two sets of coordinate systems x and yare prepared,
as shown in Fig. I.

In the coordinate system Xi (i = 1,2, 3), the coordinate axis x 3 takes the axial curve
that is the centroidal axis, and the transverse axes x"" (<< = 1,2) take the directions of the
base vectors A«, respectively, in the transverse cross-section prescribed by the value of x 3•

Herein values of x« always indicate a point located on the middle surface of the shell.
On the other hand, the yO-coordinate system (0 = 1,2,3) is a curvilinear coordinate

system defined on the middle line in the transverse cross-section prescribed by the values
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Fig. I. Coordinates and base vectors.
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of x 3• The yl-coordinate axis takes the direction of the thickness of the shell prescribed by
the base vector T I; and the y2-coordinate axis takes the direction of the middle line
possessing the base vectorT2for the tangential vector; and the y 3-coordinate axis prescribed
by the base vector T 3 agrees with the x 3-axis.

The xi-coordinate system is used in the macroscopic expression for rods, meanwhile
the ya-coordinate system is used in the microscopic expression, such as indicating warping
and the distortion of the transverse cross-section. Thus, it is convenient from the engineering
point of view to use two coordinate systems properly. .

The position vector R of a point on the middle surface in the undeformed cylindrical
shell is a function ofan angle ¢ and the x 3-axis with x" = x"(¢). Here an angle ¢ is measured
counterclockwise from the xl-coordinate axis to the i-coordinate axis as shown in Fig. 3.
Hence, the position vector R may be expressed by

(1)

Top

Bottom

x 3

t............ AXIOI curve

IUNDEfORMED STATEI

x3

IDEFORMED STATEI /

Fig. 2. Deformations of cylinders.
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Fig. 3. Angle of <p.

Xl

in which the vector R(x 3
) is the position vector of the axial point, and the base vectors

A.(x3
) are unit vectors taken along the transverse x"-axes, respectively.

Now, it is assumed that the deformations of a point on the middle surface in the
cylindrical shell can be expressed by the sum of the fundamental plane deformation, that
can be represented sufficiently by the variations of three base vectors, Ai' prepared on the
axial x 3-coordinate, and the higher-ordered deformation occurring by warping and the
distortion of the transverse cross-section on the middle surface. Also, it is assumed that
the latter higher-ordered deformation adds to the fundamental deformation. The former
deformation consists of the displacement vector U(x 3

) of the axial point and the rotation
deformation expressed by the rotations of the base vectors A.(x3

) prescribed on the axial
line. The Bernoulli-Euler beam and the Timoshenko beam are contained in this deformation
state. On the other hand, the latter deformation is indicated by the vector V(<!>, x 3

).

Hence, the position vector r(<!>, x 3
) of a point on the deformed middle surface may be

written as

(2)

Here, the transverse base vectors a.(x3
) on the axial curve in the deformed state are not

prescribed generally in unit vectors, and they are also not necessarily perpendicular to the
base vector a3 on the deformed axial curve. Such constraints to the base vectors a. will be
discussed in Section 5. The base vectors a. may be interpreted as directors in a broad
sense[5].

Now we can express, without losing generality, the base vectors a. as

(3)

in which the vectors W.(x 3
) are, as shown in Fig. 2, the general rotation vectors both of

which can express the rotations of the base vectors A. and allow the base vectors a. to
change in length, from Refs [8, 9]. Hence, the constraints which the vectors a. take in the
deformations can be uniquely expressed by the vectors W.(x 3

).

Now, the position vector r given by eqn (2) can be written as

(4)

in which the vector W(<!>, x 3
) is the total displacement vector of a point on the middle

surface

(5)

Then, although the base vector A 3 on the axial line in the undeforrned state is defined by

(6)

we can assume it as a unit vector without losing generality.
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The base vectors Gi and gi ofa point on the undeformed and defonned middle surfaces,
respectively, can be expressed as

G;=R.;=A;

g3 = r.3 = A3+ V. 3 +x"Wa.3+ V,3

~ = r.a = Aa+Wa+V,a.

(7)

Hence, the metric tensors GIj and 91j of a point on the middle surface can be obtained in
linearized fonns

933 = A 33 +2A3{U.3+x" Wa.3 + V.3)

93a = A3(Wa+ V.a)+Aa(V.3+xI'Wp•3+V,3)'

Now, the components of displacement vectors, V, Wa, and, V, are defined by

(8)

(9)

(10)

(II)

Also, the differentiations of the displacement vectors U, WIS' and V with respect to the
variable x 3 are written as

(12)

(13)

(14)

Although the vectors T" are the base vectors in the y-coordinate system prepared on
the middle line ofthe transverse cross-section prescribed by the value ofx 3 in the undefonned
state, we can assume that they are unit vectors without losing generality. Hence, the relations
between the base vectors G; and T" of a point on the middle surface can be expressed by

(15)

in which C~ and (C-l)~ are rotation tensors defined by

{I 6)

Here, C"k is a permutation symbol.
Substituting eqns (15) into eqn (II), relations between the displacement components

V, and Vii can be given by

(17)

The displacement components V,,(y!,y2,X 3
) with respect to the y-coordinate system are

convenient for expressing both warping and the distortion of the transverse cross-section,
since the physical meaning is more explicit than the displacement components Vi with
respect to the x-coordinate system. Wherein the displacement component VI is the radial
displacement of the distortion, nonnal to the middle surface, and the component V2 is the
circumferential displacement of the distortion. Also, the component V3 is the warping,
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parallel to the axis of the shell. Now, from the symmetry of the shell with respect to the
diameter plane <jJ = 0, it may be expected from Ref. [6] that the following choice of sines
and cosines for V" fits together:

• (m)

VJ(y{,x 3) = I V1(X 3) cos m<jJ(y~)
m=O

• (m)

Vz(l,x 3) = I V2(X
3

) sin m<jJ(y{)
m={)

• (m)

V3(l,x
3

) = I V)(x)cosm<jJ(l)
m=O

(18)

in which m denotes the circumferential wave numbers of the displacements. However, since
the wave numbers, m, express the higher-ordered deformation, the m = I case is cut out..
Hence, I indicates the sum from m = 0 to 00 except for m = 1. For brevity, employing

m=O
(m)

the notation l{J" defined by

(m)

CPa = (o~ +<5:> cos m<fJ+o; sin m<fJ

in eqns (18), we can obtain the following expression:

(19)

The following notations are also defined for brevity:

(a: no sum). (20)

(III) (m)

mil - I" (C- ')I"j... , - 't'(uj i (a: no sum). (21)

Hence, substituting eqns (20) and (21) in eqo (17), the displacement components Vi
can be expressed by

• (m) (m)

Vi = I V,,(x 3
) cpr,

m=O

Also, differentiations of eqn (22) with respect to the variables x' can be written as

• (m) {m)

V, =" V, "'u
'. J L...i a. .,.l..,....'

m=O

• (m) (/tI)

" - lVl,a = L, V) CPl,,,
m=O

(m)

where CPt" takes the following values:

(m\ o~ msin m<fJ
CPl,. = r sin <jJ

(22)

(23)

(24)

Here r is a radius of the deformed cylindrical shell.
Lastly, let us consider the rate of twist, w. The rate of twist, w, is given rigorously by

(25)

Since the base vectors t~ (e = 1,2) in the deformed state with respect to the y-coordinate
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t~ = f. r ' = T~ +V. r ,
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(26)

the rate of twist, ro, can be calculated from eqn (25). But, since the expression given by this
method is complicated, we use the following mean value of the rate of twist approximately,
which neglects an effect of the distortion of the transverse cross-section:

(27)

Substituting eqn (3) into the above equation and expressing by means of eqns (9)-( I4), the
rate of twist, ro, can be obtained in the following linearized form:

(28)

4. STRAIN TENSORS

The Cauchy-Green strain tensors E 3; on the middle surface are defined by

Substituting eqn (8) into eqn (29), the linearized strain tensors E 3i can be written as

E)) = U3.3+x~ W. 3.3+ V3.3

E3• = HU~.3+ W. 3+Xfl Wp••3+ V•. 3+ V3.•J·

(29)

(30)

Substituting eqn (23) into eqns (30), the following strain distributions, prescribed on the
middle surface, are obtained:

• (m) (m)

E 33 = e3+ x• e3.+ L e3 Ipj
m=O

• (m) (m) (m) (m)

E3.=e.+xfl e.,,+ L [e~ Ip~+e 1p~ .•J.
m=O

(m) (m)

Here, the strain measures ei, eia> eu , and e are defined as follows:

(31)

e3. = W. 3•3

(m) (Ill)

e3 ji3.3

C.p = ! W,!>.3

(m) (m)
I -

e~ = "2 V~.3
(Ill) (m)

1 ­e = 2 V3 •

(32)

S. GOVERNING EQUATIONS OF MOTION

Let us present the governing equations ofmotion to circular cylindrical shells by means
of the principle of virtual work. Since the strain tensors given by eqn (29) are the mean
strain tensors prescribed on the middle surface, the effect of the thickness-wise variation of
strains is neglected. This effect can be considered by adding the virtual work done by the
St. Venant torsional moment, T, to the internal virtual work.

Hence, the internal virtual work bW, may be expressed by

(33)

SAS 23:6-1
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in which SJ, arc the Kirchhoff stress tensors. The substitution of eqn (31) into the above
equation gives

in which the stress resultants and stress couples are defined as follows:

(m) f (m)
N = S3« CP~.« dS. (35)

Also, using the rate of twist given by eqn (28), the St. Venant torsional moment, T, can be
expressed as

T = GJro = GJW21 •3 (36)

in which the S1. Venant torsional constant, J, for circular cylindrical shells takes the form

(37)

in which R is the radius of the undeformed shell. Now, substituting eqns (28) and (32) into
eqns (35), the internal virtual work, () W;, can be written as

Meanwhile, the external virtual work, 1J W., is given by

{)W. = [ p(P-c)6W dV+ [ t {)WdS+i t ()W dSJv Js. s" (39)

in which p{x«, x 3
) and c(x«, x 3

) are the external force and acceleration per unit area in the
undeformed shell with density, p, respectively. Also, V denotes the total volume. The

•notation Sa indicates the lateral surface of the shell on which the stress vector T is prescribed,
and Sac indicates the boundary surface at the end point of the shell on whieh the stress

vector t is prescribed.
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The components of the vectors p, e, and t are expressed as follows:

p = PiAi = PiAi = paTu = PuTu

e = CiAi = CiAi = CaTu = CuTu

t = TiA = TAi = taT = t TUI I a Q.

805

(40)

Now, the external components working with the displacement components Vi or W.i are
expressed with respect to the x-coordinate system, and the external components working
with the displacements Va are indicated with respect to the y-coordinate system. Hence, the
external virtual work can be written as

Here, the external forces and accelerations and others are defined as

(41)

(m) r (m) r· (m)

pU = Js p pra] CP[a] dS+Jc f[a] cpru] de (0: no sum) (42)

(m) r (m)

C' = Js p cIa] CP[a] dS (0: no sum)

in which de indicates the circumferential infinitesimal length of the shell. The components
pi are the components of the external load expressed in the macroscopic meaning. On the

(m)

other hand, the components pa are the components of the external load, which work with
either warping or the distortion of the transverse cross-section, expressed in the microscopic

(m)

meaning. For example, for liquid storage tanks the components pU are given by integrating
•

the product of the dynamic liquid pressures, fu, acting inside the tank given by Housner[4]
(m)

and the modes of the distortion of the transverse cross-section, CPa'
Substituting eqns (38) and (41) into the principle of virtual work given by

(43)

then the equations of motion and the boundary conditions can be obtained as follows:

equations of motion

(m) (m) (m) (m) (m)

b fJ,,: N".3-b; N+, == C';

(44)

(45)

(46)
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Fig. 4. Positive direction of stress resultants and stress couples.

boundary conditions

Vi =0

(m)

VII = 0
(m) (m)

or ± Nil = fll'.

(47)

(48)

(49)

Here plus and minus signs are taken to the boundary surfaces prescribed on x 3 = I and 0,
respectively. If each positive direction of t~e stress resultants and stress couples at x 3 = 0
is defined in contrast with the direction given by Fig. 4, then these signs always have the
plus sign.

Although the stress couples, Moi, external moments, m·i , and acceleration moments,
bOi, used in the present theory are expressed in the dual form, these expressions are related
to the usual expressions for moments using rod theory as follows:

(50)

in which 60 ij is a three-dimensional permutation symbol. The moments are defined as
clockwise moments in the positive directions of the coordinate axes, as shown in Fig. 4.

6. CONSTITUTIVE EQUATIONS

Supposing that the strains are infinitesimal, the stress-strain relations can use the
following engineering forms:

S33 =:;; E E33

S3. = 2G £30

where £ is Young's modulus of elasticity, and G the shearing modulus.

(51)
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Substituting eqns (51) and (31) into eqns (35), the constitutive equations for the circular
cylindrical shelI can be written as

[

0 {(k) (k) (k) (kl}]

N·=2G Ae.+k~O I~ e{+ I;e

[

0 {(k) (k) (k) (k)}]
MfJ. = 2G IfJ~e.'1 +k~O I~P e{ + I;P e

(m) [(m) 0 (m.k) (k)]
N 3 = E ne3+ L: 133 e3

k= 0

(III) [{(lIIl (III) } 0 {(m.k) (k) (k,m) (k)}]
N{ = 2G c5'" I~ e" + 1~/1 eAp + L: /{~ e~ + /3{ e

k-O

(m) [{(m) (m) } 0 {(m,k) (k) (m.k) (k)}]
N = 2G c5•.l I: e" + I:P eAp + L. /3{ e~+ L.1- .

k= 0

Here, the constants of the cross-section are defined as

{A} { }r =f x' dS

1"/1 x·x'l

(52)

(m.k) f(m) (k)
1 = cp3 cp3 c5./l dS.3.. 3.fJ

The constants of the cross-sections are influenced by the distortion of the transverse
cross-section but are independent of warping. This influence can be considered as follows:
the infinitesimal area, dS, in eqns (53) may be expressed as

dS = r dtfJ dr. (54)

Here r is a radius of the deformed shell, as shown in Fig. 5, and is a function of the distortion
of the transverse cross-section.

It is sufficient to consider only transverse loads acting in one direction for usual external
loads acting on cantilevered circular cylindrical shells used as tanks and silos. Accordingly,
let us assume that the external loads are transverse loads acting in the xl-direction only.

(ft)

Then, in the distortion of the transverse cross~section the radial displacement VI becomes
(ft)

important and the circumferential displacement V2 is of a negligible order as comparedw .
with the displacement VI' Hence, the radius r can be expressed approximately as

r(tfJ,x3
) = J«R+ V])2+(V2)2) ~ R+ PI

o eft)

= R+ L. VJ cos ntfJ·
ft-O

(55)
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-...

yl

--i---f-----t"""''----'-.:.....--:--i-- x'

Fig. 5. Distortion of the cross-section.

Substituting eqn (55) into eqn (54), we can write

(

• (n) ) (. (n) )

dS = R+ L t:\ cos nq, dq, dr ~ t R+ L VI cos nq, dq,.
n-O n-O

(56)

Hence, the constants of the cross-section calculated by eqn (56) can be expressed, respect·
ively, by the sum of the usual constant of the cross-section without the distortion of the
transverse cross-section, which is indicated with subscript 0, and the constant of the cross­
section with the distortion of the transverse cross-section of the circumferential wave
numbers, n, which is indicated with superscript *. For example

• (n)

I"fl = oI«fl + L VI jufl(n).
n-O

(57)

Provided that the cross-sectional area, A, is independent of distortion.
However, since the relation VI « R is always valid for usual circular cylindrical shells,

the influence of the distortion of the transverse cross-section on the constants of the cross­
section is negligible. Hence, this influence is considered only for the geometrical moment
of inertia and is neglected for the others. The values of the constants of the cross-section
are given in the Appendix. Also, using this approximation, the underlined terms in the
constitutive equations, eqns (52), vanish.

7. APPROXIMATIONS

The governing equations of rod theory including the distortion of the transverse cross­
section to the circular cylindrical shells have been given by the strain-displacement relations
(32), the equations of motion (44)-(46), the constitutive equations (52), and the boundary

(m)

conditions (45)-(49), for displacement components Vi' W«I> and Va' To apply the presented
theory to practical problems, it is necessary to decrease the unknown quantities. This is
accomplished by using the' classical hypotheses in rods.

As for the classical hypotheses on rod theory, ignoring both warping and the distortion
ofthe transverse cross-section, there are the Bernoulli-Euler hypothesis and the Timoshenko
beam hypothesis.

The Bernoulli-Euler hypothesis consists of the rigid displacement of the cross-section
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x3

./' AXIOI curve

AI: orthogonal unit vectors

Bernoull i -Euler beam Tlrnoshenko beam

~
3

\ Oa
AXlol curve a I d•

•

Fig. 6. Bernoulli-Euler beam and Timoshenko beam.

and the conservation of the perpendicularity of the cross-section, as shown in Fig. 6. The
Bernoulli-Euler hypothesis in the present theory implies that the following relations for the
base vectors 8j on the deformed axial curve must exist:

(58)

(59)

Since the base vector, 83' on the deformed axial curve is expressed by

(60)

eqns (58) and (59) can be rewritten in linearized forms as

w.3+V•. 3 = O.

(61)

(62)

Hence, the Bernoulli-Euler hypothesis in the infinitesimal deformation can be expressed by

(63)

(64)

On the other hand, the Timoshenko beam hypothesis extends the Bernoulli-Euler
hypothesis, such as considering the transverse shear deformation by the mean transverse
shear deformation. Therefore, the base vectors 83 and 8. on the deformed axial curve do
not perpendicularly intersect each other. Now, let us express·the base vectors a. in the
deformed state by

(65)

in which vectors i a are base vectors perpendicular to the base vector 83, as shown in Fig.
6, and they coincide with the base vectors in the Bernoulli-Euler beam. Also, the vectors
d.(x3) indicate the mean transverse shear deformations. Hence, the Timoshenko beam
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hypothesis can be expressed by

Expressing the above equations by displacements we can take the linearized forms

WII == Wn =0, W12 == -W21

W«3 == - U«,3 +D«3

(66)

(67)

(68)

(69)

in which D«i are the components of the vectors d«. For usual structures, it is sufficient to
consider only the displacement components D«3 for d«. Hence, we can assume

(70)

The above-mentioned two hypotheses ignore both warping and the distortion of the
transverse cross·section. As for a typical theory including warping, the Vlasov theory is
well known. Since the Vlasov theory considers only warping in addition to the BernouIli­
Euler hypothesis prescribed by eqns (58) and (59), the displacement, V, can be written as

(71)

Then, the relations between the rotational angles, (]i, used generally in rod theory and
the rotation tensors W«3 and WI2 (= - W21 ) used in the present theory can be expressed
by

(72)

as rigid displacement of the cross-section is assumed. Here (ji are the rotational angles about
the xi-coordinate axes, as shown in Fig. 4, and their positive directions are defined as the
clockwise rotation with respect to the coordinate axes.

Also, in rods the following expression which eliminates the shearing forces N« from
eqns (44) and (45) is used generally:

(73)

Since the differential term of the acceleration moment is generally negligible, we can take
the form

(74)

8. EXAMPLES

In order to examine the presented theory, a static and an elastic problem of a can­
tilevered circular cylindrical shell, as shown in Fig. 7, is considered. The shell bottom is
regarded as anchored to its rigid foundation, and the top of the shell is assumed to be open.
Also, it is assumed that a load is only a uniform transverse load per unit length of the Xl.

coordinate axis acting at a position at tP = 1800 in the cross-section. Let us analyze this
problem using the Bernoulli-Euler beam theory, the Timoshenko beam theory, and the
theory including the distortion of the transverse cross-section, which these theories are
obtained from the derived governing equations. For brevity, the x 3-coordinate axis in the
present section is indicated by x.

8.1. The Bernoulli-Euler beam
Using the Bernoulli-Euler hypothesis, the unknown displacement for the present

problem becomes either VI or 82 (== - W12) alone. Hence, from eqn (74), the equilibrium
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T
811

equation can be written as

pi

Fig. 7. Canlilcvered cylinders.

Xl

(75)

By substituting eqn (32) into eqn (52), the stress couple M 13 is expressed as

(76)

By ignoring the transverse shear deformation, the rotation angle (j2 can be expressed as

Hence, the equilibrium equation, eqn (75), becomes

pi
VI.3333 = E1 II '

The general solution of the above equation can be obtained as follows:

(77)

(78)

(79)

The integral constants C" C2, C3, and C4 are determined from the following boundary
conditions:

VI =0 at x=O (80)

(J2 = 0 at x=O (81)

M 13
•3 _N 1 = 0 at x=l (82)

M I3 =0 at x = I. (83)

SAS U:I-J
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I-Icnl:c. thc solution can bc obtaincd as

where x = x/I

And. thc stress couple, M 2, and the stress resultant, N I, yield

pip
M 2 = _M 13 = _(l-X)2

2

N I = M 13 .3 =pl/(l-x).

These results agree with the well-known results of the Bernoulli-Euler beam.

(84)

(85)

(86)

8.2. The Timoshenko beam
Considering the Timoshenko beam, the unknown displacements are VI and either W l3

or D 13' From eqn (59), the displacement W l3 is given by

(87)

Expressing eqns (44) and (74) by the displacements, the equilibrium equations can be
written as

(88)

(89)

111 which K is a factor considering the distribution of the shearing stress, and for example,
it can employ the following value given by Cowper[7] :

(90)

where 11 is a ratio of the external to internal diameters, and v is Poisson's ratio.
Substituting eqn (87) into eqns (88) and (89), the general solutions for Viand D 13 can

be obtained as follows:

(91 )

(92)

in which the integral constants C\> C 2, C3, C4, and Cs are determined by the following
boundary conditions:

VI =0 at x=O (93)

WI3 = 0 at x=O (94)

N I =0 at x=1 (95)

EI" W13.33-GKA(WI3+VI,3) = 0 at x=1 (96)

M I3 =0 at x = t. (97)
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(98)

Hence, the above solutions can be written as

P'r pip
VI = 24£[11 (6x

2
-4;e+x

4
) + 2GKA x(2-x)

p 1 l
D I3 = GKA(I-x).

Also, the displacement W13 (= -()2), the stress couple, and the shearing force are the same
as eqns (84), (85), and (86), respectively, given in the Bernoulli-Euler beam. The obtained
results coincide with the well-known results of the Timoshenko beam theory.

(99)

8.3. The theory including the distortion of the transverse cross-section
Let us ignore the transverse shear deformation for brevity. Also, since the transverse

(m)

load considered does not have a torsional moment, the warping V3 is negligible. Hence, it
(m)

is sufficient to consider only VI and V~ (e = 1,2) for displacements. From eqns (74) and
(46), the equilibrium equations for these displacements can be written as

[

• (n) ]11 - ·11 IcVI : E of + L VI f (n) W13•m +p =0
n- 0

• (m.k) (k) (m)

G I I~~ V~.33 p~ =O.
kaO

(l00)

From the Appendix, the constants of the cross-section can be given by

(m.k)

[~~ ~ mR c5~~ S(n-k) (101 )

in which the notation Sen - k) is given by eqn (A2) in the Appendix. Considering eqns (101),
eqn (100) can be rewritten in the form

(m.m) (m) (m)

G [~{ V~. 33 + p~ =0 (m and e: no sum). (l02)

Owing to a lowering of the geometrical moment of inertia, Ill, by the distortion of the
transverse cross-section, eqn (99) is of the coupled form.

(m)

Now, since the load p{ is independent of the variable x 3
, the general solutions for eqn

(102) are

(103)(m and e: no sum).

(m)

(m2 p{ x 2

V{ = C I X+C2 ---­
(m,m) 2

G I~{

The integral constants C I and C2 are determined from the boundary conditions. The
boundary conditions for the present problem can be written as follows:

VI =0 at x=o (104)

W13 = -Vl.3 = 0 at x=o (l05)

(m)

V~ = 0 at x=O (106)

M I3
•3-N 1 = 0 at x=l (107)1

M13 =O at x=l (108)1

(m)

N{ = 0 at x = I. (109»)
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Equations (107) ,-(I 09) 1 can be rewritten. respectively. in displacements as follows:

UI.333 =0 at x=1

U 1.33 =0 at x=1

(m)

V~.3 =0 at x = I. (I09h

(m)

Determining the integral constants from eqns (106) and (J 09h, the displacements V~ can
be given as follows:

(110)(m and ~ : no sum).

(m)

(1'2 ft~ 12 i
V~ =-- -(2-i)

(m,m) 2
G I~~

Then, let us try to obtain the displacement VI' Equation (99) can be rewritten as

[

• (n) ]
II - • I' ,E 01 + LVII (n) V',3333-P = 0

n- 0

(III)

with U I' The term in square brackets is given in the form

• (n) [(2) 3 ]
I" +" V i I I (n) = I" I + V -o L. I 0 , 2R

n=O
(112)

which is a function of x J
• Although it is possible to obtain analytically the solution of eqn

(III), the following assumption is employed to obtain easily the solutions: since
( 2)

V,/R« I for usual structures, eqn (III) can be rewritten approximately as

pi pi [ (:! 3 ]
UU333 = II [ (:! 3]::::: EoI l1 1- V I2R .

Eol I + V, 2R

(113)

The substitution of eqn (100) is

UI,3333 = a+bx+cx 2 (114)

in which a, b, and c take the following values:

(2) (21

pi 3ft l l pi 3ftl
b = - E oIl' 2G1ttR 2 ' C = E 0 1" 4GmR 2 '

(lIS)

The general solution of eqn (114) is

(116)

Determining the integral constants C I to C4 from boundary conditions (104), (105), (l07h.
and (IOSh. the displacement U I is given by

Ir
V p [6- 2 4- 3 +-4]

I = 24E 0/ 11 x - x x

br c~
+ -[20i2 -10i3+i5

] + - [45i 2 -20i 3+i6
]

120 360 .
(117)
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The first term in eqn (117) indicates the transverse deflection of the Bernoulli-Euler beam.
The underlined terms indicate the transverse deflection of the axial curve x 3 caused by a
lowering of the bending stiffness by the distortion of the transverse cross-section.

Now, taking the size of the circular cylindrical shell and the load pi as follows:

radius R = 500 em, height / = 1000 cm, thickness t = 0.3 em,

E= 2.1 x 103 tfcm- 2, v = 0.3, pi = 1 tfcm- I,

and noticing that p 1 takes the following values:

(m)

pi = _pi cos (m'1800) = (_I)m+I'pl (118)

the numerical results are shown in Fig. 8. From the results, the following matters are stated.

(1) The maximum distortion of the transverse cross-section, C\, is about 2.59 times as
large as the maximum transverse deflection, V I> of the axial line, and is about 1/761 of the
diameter of the shell.

(2) A lowering of the bending stiffness by the distortion of the transverse cross-section
is affected by only the displacement VI of the circumferential wave number m = 2. The
transverse deflection, VI> of the axial curve increases slightly by this lowering. However,
since the rate of this increase is about 1.004 times as large as the Bernoulli-Euler beam,
this lowering of the bending stiffness is negligible for practical uses.

(3) The values of VI and V I are inversely proportional to the thickness, t, of the shell.

Now, if the in-plane distortion at the top of the shell is constrained, the boundary
conditions are given by

at x = I (119)

(m)

instead of eqn (109). Hence, the displacements, V{, and the coefficients band c given by
eqn (114) become

(m)

("~ pe j2
Ve =-- -x(l-x)

(m.m) 2
Glee

(120)

(2)

pi 3pi I
b = - II "E 01 4GrctR-

(2)

pi 3 pi
C = E 0/11 4GrctR2'

/.
/.

/

/

/,
/

/'

/
,/':"'Berroulli - Euler beam

/ - Timoshenko beam
/ --- Beam includinlj distortion

(121 )

1.0 0.5 1.0

V, (em) VI tem)

Fig. 8. Displacements U, and VI of cantilevered circular cylinders.
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The numerical results of this case are shown in Fig. 8, and the following results are obtained.

(I) The maximum distortion in the case constrained the in-plane distortion at the top
of shells is about 1/4 times as large as the maximum distortion in the unconstrained case.

(2) The maximum transverse deflection, V" and the maximum distortion are 1.0006
times and 0.65 times, respectively, as large as the maximum transverse deflection of the
Bernoulli-Euler beam. Hence, it is effective in excluding the distortion to constrain the
distortion at the top of the shell.

From the above lhe efTecl of the distortion of the transverse cross-section on the
transverse displacement VI is negligible, we may use the Timoshenko beam hypothesis
instead of the Bernoulli-Euler hypothesis used here for more accurate calculations.

9. CONCLUSIONS

The governing equations of motion for a circular cylindrical shell used in tanks and
silos have been presented by rod theory including the distortion of the transverse cross­
section. The governing equations are derived for infinitesimal deformations through the
principle of virtual work, under the assumption that the deformation in the rod can be
expressed by the higher-ordered deformation caused by the warping and distortion of the
transverse cross-section added to the fundamental plane deformation expressed by the
variations of the base vectors on the axial curve of the rod.

Also, using the classical hypotheses in rod theory, the simplifications of the governing
equations have been discussed. Finally, the reliability of the derived theory has been shown
by applying the Bernoulli-Euler beam theory, the Timoshenko beam theory, and the theory
including the distortion to an elastic and static problem ofa cantilevered circular cylindrical
shell subjected to a uniform load. Also, for a circular cylindrical shell where the relation
I « R is valid, it has been shown that the influence of distortion on the constants of the
cross-section is negligible. Therefore, the transverse deflection, V h of the axial line can be
calculated approximately by the Bernoulli-Euler beam or more accurately by the Timo­
shenko beam, and this result is very useful in practice.

It is possible to extend the present theory to geometrically and materially non-linear
problems, and the theory can be applied effectively further to buckling and dynamic
problems of cylindrical shells.
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APPENDIX: THE CONSTANTS OF THE CROSS-SECTION

If the effect of the distortion of the transverse cross-section is considered only for the geometrical moment
of inertia, the constants of the cross-section defined by eqn (53) can be written approximately as follows for a



(for ~ = fJ)

(for ~ '" fJ)
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uniformed circular cylindrical shell :

A ~2n/R

or' ~ nlR l 0·', j·'(n) = 1n/R2 g(n-2)(oi01-OiO~)
(....)

III ~ 'f[/R S(m -k)
(..)n ~ 2mn/ (for odd m)
(..j n
I;' ~ Z/R 2 S(m-2)

n 2 (
~ -"2/R o(m-2)

(m,k)

1(0 ~ nlRo{O S(m-k)
(..jnI ~ 2mn/R (for even m)

(....)

13{ ~ 2mn/ (for odd or even both m and k).

All others are zero.
Where the notation g(m-k) is defined as follows:

HI?

(AI)

g(m-k) = I

=0

(for m = k)

(for m '" k).
(A2)


